Nuprl Lemma : single-threaded-relation3
11,40
postcript
pdf
es
:ES,
P
:(E
),
R
:(E
E
).
(
e
:E. Dec(
P
(
e
)))
(
e
,
e'
:E. Dec(
R
(
e'
,
e
)))
R
=>
x
,
y
. (
x
<
y
)
(
e
,
e'
:E. (
P
(
e
) &
R
(
e'
,
e
))
P
(
e'
))
(
m
,
m'
:E.
P
(
m
)
P
(
m'
)
(
e
:E. (
e
R
m
)
(
P
(
e
)))
(
e
:E. (
e
R
m'
)
(
P
(
e
)))
(
m
=
m'
))
(
a
,
b
,
e
:E.
(
x
,
y
:E.
x
c
e
y
c
e
P
(
x
)
P
(
y
)
(((
x
R
^+
y
)
(
x
=
y
))
(
y
R
^+
x
)))
(
R
(
e
,
a
) &
R
(
e
,
b
))
(
P
(
e
) &
P
(
a
) &
P
(
b
))
(
z
:E.
(
R
^+(
e
,
z
) &
R
^+(
z
,
a
) &
P
(
z
)))
(
z
:E.
(
R
^+(
e
,
z
) &
R
^+(
z
,
b
) &
P
(
z
)))
(
a
=
b
))
(
e
,
e'
:E.
P
(
e
)
P
(
e'
)
(((
e
R
^+
e'
)
(
e
=
e'
))
(
e'
R
^+
e
)))
latex
Definitions
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
t
T
,
P
Q
,
x
f
y
,
P
&
Q
,
x
(
s
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
False
,
A
,
x
:
A
.
B
(
x
)
,
R1
=>
R2
Lemmas
rel
plus
trans
,
single-threaded-relation
,
rel-rel-plus
,
rel
plus
implies
,
es-causl
transitivity
,
rel
plus
minimal
,
decidable
rel
plus-causl
,
event
system
wf
,
decidable
wf
,
es-causl
wf
,
rel
implies
wf
,
not
wf
,
rel
plus
wf
,
es-causle
wf
,
es-E
wf
origin